
MODULE-3 CHAPTER 6

Application Protocols for IoT

Rukmini B, Dept. of CSE, SMVITM 1

Rukmini B, Dept. of CSE, SMVITM

2

 The Transport Layer

 IoT Application Transport Methods

Generic Web-Based Protocols

Rukmini B, Dept. of CSE, SMVITM

3

• Web-based protocols have become common in consumer and

enterprise applications and services.

• Hence, it makes sense to try to leverage these protocols when

developing IoT applications, services, and devices in order to

ease the integration of data and devices from prototyping to

production.

• The level of familiarity with generic web-based protocols is

high and programmers with basic web programming skills can

work on IoT applications.

Rukmini B, Dept. of CSE, SMVITM

4

• The scaling methods for web environments is also well

understood and it is crucial while developing consumer

applications for potentially large number of IoT devices.

• In this case again we need have a look into a issue of constrained

or non-constrained nodes and networks to design an appropriate

web-based IoT protocol.

• When considering web services implementation on an IoT device,

the choice between supporting the client or server side of the

connection must be carefully weighed.

Rukmini B, Dept. of CSE, SMVITM

5

• On non-constrained networks, such as Ethernet, Wi-Fi, or

3G/4G cellular, where bandwidth is not perceived as a potential

issue, data payloads based on a verbose data model

representation, including XML or JavaScript Object Notation

(JSON), can be transported over HTTP/HTTPS or WebSocket.

• On constrained nodes, one can deploy an embedded web server

software with advanced features implemented in very little

memory. This enables the use of embedded web services software

on some constrained devices.

Rukmini B, Dept. of CSE, SMVITM

6

• Interactions between real-time communication tools powering

collaborative applications, such as voice and video, instant

messaging, chat rooms, and IoT devices, are also emerging.

• This is driving the need for simpler communication systems

between people and IoT devices. One protocol that addresses this

need is Extensible Messaging and Presence Protocol (XMPP).

• In summary, the Internet of Things greatly benefits from the

existing web-based protocols. These protocols, including

HTTP/HTTPS and XMPP, ease the integration of IoT devices in

the Internet world through well-known and scalable programming

techniques.

IoT Application Layer Protocols

Rukmini B, Dept. of CSE, SMVITM

7

• When considering constrained networks and/or a large-scale

deployment of constrained nodes, verbose web-based and

data model protocols, may be too heavy for IoT

applications.

• To address this problem, the IoT industry is working on

new lightweight protocols that are better suited to large

numbers of constrained nodes and networks.

Rukmini B, Dept. of CSE, SMVITM

8

• Two of the most popular protocols are

• CoAP and MQTT.

• Figure 6.6 highlights their position in a common IoT protocol

stack.

• In Figure 6.6, CoAP and MQTT are naturally at the top of this

sample IoT stack, based on an IEEE 802.15.4 mesh network.

• We will almost always find CoAP deployed over UDP and

MQTT running over TCP.

Rukmini B, Dept. of CSE, SMVITM

9

CoAP

• Constrained Application Protocol (CoAP) resulted from the

IETF Constrained RESTful Environments (CoRE) working

group’s efforts to develop a generic framework for resource-

oriented applications targeting constrained nodes and networks.

• The CoAP framework defines simple and flexible ways to

manipulate sensors and actuators for data or device management.

Rukmini B, Dept. of CSE, SMVITM

10

Figure 6.6: Example of a High-Level IoT Protocol Stack for CoAP and MQTT

Rukmini B, Dept. of CSE, SMVITM

11

• The IETF CoRE working group has published multiple standards-track

specifications for CoAP, including the following:

 RFC 6690: Constrained RESTful Environments (CoRE) Link Format

 RFC 7252: The Constrained Application Protocol (CoAP)

 RFC 7641: Observing Resources in the Constrained Application Protocol

(CoAP)

 RFC 7959: Block-Wise Transfers in the Constrained Application Protocol

(CoAP)

 RFC 8075: Guidelines for Mapping Implementations: HTTP to the

Constrained Application Protocol (CoAP)

Rukmini B, Dept. of CSE, SMVITM

12

• The CoAP messaging model is primarily designed to facilitate

the exchange of messages over UDP between endpoints, including

the secure transport protocol Datagram Transport Layer Security

(DTLS).

• The IETF CoRE working group is studying alternate transport

mechanisms, including TCP, secure TLS, and WebSocket.

• CoAP over Short Message Service (SMS) as defined in Open

Mobile Alliance for Lightweight Machine-to-Machine (LWM2M)

for IoT device management is also being considered.

Rukmini B, Dept. of CSE, SMVITM

13

• Four security modes are defined: NoSec, PreSharedKey,

RawPublicKey, and Certificate.

• The NoSec and RawPublicKey implementations are

mandatory.

• From a formatting perspective, a CoAP message is composed

of a short fixed length Header field (4 bytes), a variable-

length but mandatory Token field (0–8 bytes), Options fields

if necessary, and the Payload field.

Rukmini B, Dept. of CSE, SMVITM

14

• Figure 6.7 details the CoAP message format, which delivers low

overhead while decreasing parsing complexity.

• The CoAP message format is relatively simple and flexible.

• It allows CoAP to deliver low overhead, which is critical for

constrained networks, while also being easy to parse and process

for constrained devices.

Rukmini B, Dept. of CSE, SMVITM

15

Figure 6.7: CoAP Message Format

Rukmini B, Dept. of CSE, SMVITM

16

Rukmini B, Dept. of CSE, SMVITM

17

• CoAP can run over IPv4 or IPv6.

• It is recommended that the message fit within a single IP packet

and UDP payload to avoid fragmentation.

• For IPv6, with the default MTU size being 1280 bytes and

allowing for no fragmentation across nodes, the maximum

CoAP message size could be up to 1152 bytes, including 1024

bytes for the payload.

Rukmini B, Dept. of CSE, SMVITM

18

• As illustrated in Figure 6.8, CoAP communications across an IoT

infrastructure can take various paths.

Figure 6.8: CoAP Communications in IoT Infrastrucutres

Rukmini B, Dept. of CSE, SMVITM

19

• Example 6.2 shows the CoAP URI format. We may notice

that the CoAP URI format is similar to HTTP/HTTPS.

• The coap/coaps URI scheme identifies a resource, including

host information and optional UDP port, as indicated by the

host and port parameters in the URI.

Example 6.2 : CoAP URI Format

Rukmini B, Dept. of CSE, SMVITM

20

• Connections can be between devices located on the same or

different constrained networks or between devices and generic

Internet or cloud servers, all operating over IP.

• Proxy mechanisms are also defined, and RFC 7252 details a

basic HTTP mapping for CoAP.

Rukmini B, Dept. of CSE, SMVITM

21

• As both HTTP and CoAP are IP-based protocols, the proxy

function can be located practically anywhere in the network,

not necessarily at the border between constrained and non-

constrained networks.

• Just like HTTP, CoAP is based on the REST architecture, but

with a “thing” acting as both the client and the server.

Rukmini B, Dept. of CSE, SMVITM

22

• Through the exchange of asynchronous messages, a client

requests an action via a method code on a server resource.

• A uniform resource identifier (URI) localized on the server

identifies this resource.

• The server responds with a response code that may include a

resource representation.

• The CoAP request/response semantics include the methods

GET, POST, PUT, and DELETE.

Rukmini B, Dept. of CSE, SMVITM

23

• CoAP defines four types of messages: confirmable, non-

confirmable, acknowledgement, and reset.

• Method codes and response codes included in some of these

messages make them carry requests or responses.

• CoAP code, method and response codes, option numbers, and

content format have been assigned by IANA as Constrained

RESTful Environments (CoRE) parameters.

• While running over UDP, CoAP offers a reliable transmission of

messages when a CoAP header is marked as “confirmable.”

Rukmini B, Dept. of CSE, SMVITM

24

Figure 6.9: CoAP Reliable Transmission Example

Rukmini B, Dept. of CSE, SMVITM

25

• CoAP supports basic congestion control with a default time-out,

simple stop and wait retransmission with exponential back-off

mechanism, and detection of duplicate messages through a

message ID.

• If a request or response is tagged as confirmable, the recipient

must explicitly either acknowledge or reject the message, using

the same message ID as shown in Figure 6.9.

• If a recipient can’t process a non-confirmable message, a reset

message is sent.

Rukmini B, Dept. of CSE, SMVITM

26

• Figure 6.9 shows a utility operations center on the left,

acting as the CoAP client, with the CoAP server being a

temperature sensor on the right of the figure.

• The communication between the client and server uses a

CoAP message ID of 0x47.

• The CoAP Message ID ensures reliability and is used to

detect duplicate messages.

Rukmini B, Dept. of CSE, SMVITM

27

• The client in Figure 6.9 sends a GET message to get the

temperature from the sensor.

• The 0x47 message ID is present for this GET message and that

the message is also marked with CON.

• A CON, or confirmable, marking in a CoAP message means the

message will be retransmitted until the recipient sends an

acknowledgement (or ACK) with the same message ID.

Rukmini B, Dept. of CSE, SMVITM

28

• In Figure 6.9, the temperature sensor does reply with an ACK

message referencing the correct message ID of 0x47.

• In addition, this ACK message piggybacks a successful response

to the GET request itself. This is indicated by the 2.05 response

code followed by the requested data.

• CoAP supports data requests sent to a group of devices by

leveraging the use of IP Multicast.

• Implementing IP Multicast with CoAP requires the use of all-

CoAP-node multicast addresses.

Rukmini B, Dept. of CSE, SMVITM

29

• Therefore, endpoints can find available CoAP services through

multicast service discovery.

• A typical use case for multicasting is deploying a firmware

upgrade for a group of IoT devices, such as smart meters.

• With often no affordable manual configuration on the IoT

endpoints, a CoAP server offering services and resources needs to

be discovered by the CoAP clients.

Rukmini B, Dept. of CSE, SMVITM

30

• Services from a CoAP server can either be discovered by

learning a URI in a namespace or through the “All CoAP nodes”

multicast address.

• When utilizing the URI scheme for discovering services, the

default port 5683 is used for non-secured CoAP, or coap, while

port 5684 is utilized for DTLS-secured CoAP, or coaps.

• The CoAP server must be in listening state on these ports, unless a

different port number is associated with the URI in a namespace.

Message Queuing Telemetry Transport

Rukmini B, Dept. of CSE, SMVITM

31

• At the end of the 1990s, engineers from IBM and Arcom

(acquired in 2006 by Eurotech) were looking for a reliable,

lightweight, and cost-effective protocol.

• They wanted to monitor and control a large number of

sensors and their data from a central server location, as

typically used by the oil and gas industries.

• These were some of the rationales for the selection of a

client/server and publish/subscribe framework based on

the TCP/IP architecture, as shown in Figure 6.10.

Rukmini B, Dept. of CSE, SMVITM

32

• An MQTT client can act as a publisher to send data (or

resource information) to an MQTT server acting as an MQTT

message broker.

• In the example illustrated in Figure 6.10, the MQTT client on the

left side is a temperature (Temp) and relative humidity (RH)

sensor that publishes its Temp/RH data.

• The MQTT server (or message broker) accepts the network

connection along with application messages, such as Temp/RH

data, from the publishers.

Rukmini B, Dept. of CSE, SMVITM

33

Figure 6.10: MQTT Publish/Subscribe Framework

Rukmini B, Dept. of CSE, SMVITM

34

• It also handles the subscription and unsubscription process

and pushes the application data to MQTT clients acting as

subscribers.

• The application on the right side of Figure 6-10 is an MQTT

client that is a subscriber to the Temp/RH data being generated by

the publisher or sensor on the left.

• This model, where subscribers express a desire to receive

information from publishers, is well known.

• A great example is the collaboration and social networking

application Twitter.

Rukmini B, Dept. of CSE, SMVITM

35

• With MQTT, clients can subscribe to all data (using a
wildcard character) or specific data from the information tree
of a publisher.

• In addition, the presence of a message broker in MQTT
decouples the data transmission between clients acting as
publishers and subscribers.

• In fact, publishers and subscribers do not even know (or
need to know) about each other. A benefit of having this
decoupling is that the MQTT message broker ensures that
information can be buffered and cached in case of network
failures.

Rukmini B, Dept. of CSE, SMVITM

36

• This also means that publishers and subscribers do not have to

be online at the same time.

• MQTT control packets run over a TCP transport using port

1883.

• TCP ensures an ordered, lossless stream of bytes between the

MQTT client and the MQTT server.

• Optionally, MQTT can be secured using TLS on port 8883, and

WebSocket (defined in RFC 6455) can also be used.

Rukmini B, Dept. of CSE, SMVITM

37

• MQTT is a lightweight protocol because each control packet

consists of a 2-byte fixed header with optional variable header

fields and optional payload.

• We should note that a control packet can contain a payload up to

256 MB. Figure 6.11 provides an overview of the MQTT

message format.

Rukmini B, Dept. of CSE, SMVITM

38

Figure 6.11: MQTT Message Format

Rukmini B, Dept. of CSE, SMVITM

39

• Compared to the CoAP message format, MQTT contains a

smaller header of 2 bytes compared to 4 bytes for CoAP.

• The first MQTT field in the header is Message Type, which

identifies the kind of MQTT packet within a message.

• Fourteen different types of control packets are specified in

MQTT version 3.1.1.

• Each of them has a unique value that is coded into the Message

Type field. Note that values 0 and 15 are reserved.

• MQTT message types are summarized in Table 6.2.

Rukmini B, Dept. of CSE, SMVITM

40

Table 6.2 : MQTT Message Types

Rukmini B, Dept. of CSE, SMVITM

41

• The next field in the MQTT header is DUP (Duplication

Flag).

• This flag, when set, allows the client to notate that the packet

has been sent previously, but an acknowledgement was not

received.

• The QoS header field allows for the selection of three different

QoS levels.

• The next field is the Retain flag. Only found in a PUBLISH

message, the Retain flag notifies the server to hold onto the

message data

Rukmini B, Dept. of CSE, SMVITM

42

• This allows new subscribers to instantly receive the last known

value without having to wait for the next update from the

publisher.

• The last mandatory field in the MQTT message header is

Remaining Length.

• This field specifies the number of bytes in the MQTT packet

following this field.

• MQTT sessions between each client and server consist of four

phases: session establishment, authentication, data exchange, and

session termination.

Rukmini B, Dept. of CSE, SMVITM

43

• Each client connecting to a server has a unique client ID, which

allows the identification of the MQTT session between both

parties.

• When the server is delivering an application message to more

than one client, each client is treated independently.

• Subscriptions to resources generate SUBSCRIBE/SUBACK

control packets, while unsubscription is performed through the

exchange of UNSUBSCRIBE/UNSUBACK control packets.

Rukmini B, Dept. of CSE, SMVITM

44

• Graceful termination of a connection is done through a

DISCONNECT control packet, which also offers the capability

for a client to reconnect by re-sending its client ID to resume the

operations.

• A message broker uses a topic string or topic name to filter

messages for its subscribers. When subscribing to a resource, the

subscriber indicates the one or more topic levels that are used to

structure the topic name.

• The forward slash (/) in an MQTT topic name is used to

separate each level within the topic tree and provide a hierarchical

structure to the topic names.

Rukmini B, Dept. of CSE, SMVITM

45

• Figure 6.12 illustrates these concepts with adt/lora.adeunis being

a topic level and adt/lora/adeunis/0018B2000000023A being an

example of a topic name.

• Wide flexibility is available to clients subscribing to a topic name.

• An exact topic can be subscribed to, or multiple topics can be

subscribed to at once, through the use of wildcard characters.

Rukmini B, Dept. of CSE, SMVITM

46

• A subscription can contain one of the wildcard characters to

allow subscription to multiple topics at once.

• The pound sign (#) is a wildcard character that matches any

number of levels within a topic.

• The multilevel wildcard represents the parent and any

number of child levels.

Rukmini B, Dept. of CSE, SMVITM

47

Figure 6.12: MQTT Subscription Example

Rukmini B, Dept. of CSE, SMVITM

48

• For ex : subscribing to adt/lora/adeunis/# enables the reception

of the whole subtree, which could include topic names such as the

following:

 adt/lora/adeunis/0018B20000000E9E

 adt/lora/adeunis/0018B20000000E8E

 adt/lora/adeunis/0018B20000000E9A

• The plus sign (+) is a wildcard character that matches only one

topic level.

• For ex : adt/lora/+ allows access to adt/lora/adeunis/ and

adt/lora/abeeway but not to adt/lora/adeunis/0018B20000000E9E.

Rukmini B, Dept. of CSE, SMVITM

49

• PINGREQ/PINGRESP control packets are used to validate the

connections between the client and server.

• Similar to ICMP pings that are part of IP, they are a sort of

keepalive that helps to maintain and check the TCP session.

• Securing MQTT connections through TLS is considered optional

because it calls for more resources on constrained nodes.

Rukmini B, Dept. of CSE, SMVITM

50

• When TLS is not used, the client sends a clear-text

username and password during the connection initiation.

MQTT server implementations may also accept anonymous

client connections(with the username/password being

“blank”).

• When TLS is implemented, a client must validate the server

certificate for proper authentication.

Rukmini B, Dept. of CSE, SMVITM

51

• The MQTT protocol offers three levels of quality of service

(QoS).

• QoS for MQTT is implemented when exchanging application

messages with publishers or subscribers, and it is different from

the IP QoS that most people are familiar with.

• The delivery protocol is concerned solely with the delivery of an

application message from a single sender to a single receiver.

• These are the three levels of MQTT QoS:

Rukmini B, Dept. of CSE, SMVITM

52

 QoS 0:

 This is a best-effort and unacknowledged data service

referred to as “at most once” delivery.

 The publisher sends its message one time to a server,

which transmits it once to the subscribers.

Rukmini B, Dept. of CSE, SMVITM

53

 QoS 1:

 This QoS level ensures that the message delivery
between the publisher and server and then between the
server and subscribers occurs at least once.

 In PUBLISH and PUBACK packets, a packet
identifier is included in the variable header.

 If the message is not acknowledged by a PUBACK
packet, it is sent again.

 This level guarantees “at least once” delivery.

Rukmini B, Dept. of CSE, SMVITM

54

 QoS 2:

 This is the highest QoS level, used when neither loss nor

duplication of messages is acceptable.

 There is an increased overhead associated with this QoS

level because each packet contains an optional variable

header with a packet identifier.

• Figure 6.13 provides an overview of the MQTT QoS flows for the

three different levels.

Rukmini B, Dept. of CSE, SMVITM

55

Figure 6.13: MQTT QoS Flows

Rukmini B, Dept. of CSE, SMVITM

56

